A Short Synthesis of (+)-endo-Brevicomin

Yoshihiro NODA and Mitsuko KIKUCHI

Department of Industrial Chemistry, College of Engineering

Nihon University, Koriyama, Fukushima 963

(+)-endo-Brevicomin was synthesized in a few-step-sequence starting from (S)-(-)-1-(1,3-dithian-2-y1)-1-propanol, which was obtained by the baker's yeast reduction of 1-(1,3-dithian-2-y1)-1-propanone.

Fujisawa and co-workers¹⁾ demonstrated that $(S)-\alpha$ -hydroxythioacetals with high optical purity (>96% ee) were obtained by baker's yeast reduction of various kinds of α -ketothioacetals. These chiral α -hydroxythioacetals are expected to serve as chiral building blocks in the synthesis of variuos natural products. We now report the synthesis of optically active (+)-endo-brevicomin (1) from (S)-(-)-1-(1, 3-dithian-2-y1)-1-propanol (4). endo-Brevicomin is one of the attractant pheromones of several pine beetle species belonging to the genera *Dendroctonus* and *Dryocetes*. A number of syntheses of endo-brevicomin have been reported.²⁾

The straightforward synthesis of (+)-endo-brevicomin $\underline{1}$ is illustrated in Scheme 1. Baker's yeast reduction of the 1-(1,3-dithian-2-y1)-1-propanone ($\underline{3}$) employed the method of Fujisawa, $\underline{1}$) thus (S)-(-)- $\underline{4}$ was obtained in good yield. Alkylation of $\underline{4}$ with 5-bromopentan-2-one ethyleneketal $\underline{3}$) (2 equiv. of n-BuLi, THF, -18-0 °C) gave ketal ($\underline{5}$), $[\alpha]_D^{22}$ -18.3°(c 9.74 CHCl₃), in 65% yield. The ketal $\underline{5}$ thus obtained was converted into ketone ($\underline{6}$), $[\alpha]_D^{22.5}$ +61.3°(c 5.51 CHCl₃), in 70% yield upon treatment with HgO(4 equiv.) and BF₃·Et₂O(2.5 equiv.) in aqueous THF. $\underline{4}$) Reduction of ketone $\underline{6}$ with $Zn(BH_{\underline{4}})_2$ in THF⁵⁾ at -78 °C, and then treatment of 1 mol dm⁻³ sulfuric acid afforded a mixture of $\underline{1}$ and $\underline{2}$ (9:1 ratio) in 56% yield, bp 120 °C/35 mmHg (Kugelrohr). $\underline{1}$ was isolated by preparative gas chromatography, $[\alpha]_D^{21}$ +74.6°(c 1.02 Et₂O), lit^{2a)} $[\alpha]_D^{21}$ +78.8° (c 0.5 Et₂O), $[\alpha]_D^{25}$ +96.6°(c 0.98

Et₂0), 2c [α] $_{D}^{21}$ +74.6°(c 1.06 Et₂0). The 1 H-NMR spectrum of the synthetic $\underline{1}$ completely coincided with that of the natural one.

Reagents: a) baker's yeast; b) n-BuLi, BrCH₂CH₂CH₂-C-CH₃; c) HgO, BF₃·Et₂O, THF, H₂O; d) $Zn(BH_4)_2$, THF; e) H₂SO₄

References

1) T.Fujisawa, E.Kojima, T.Itoh, and T.Sato, Chem.Lett., 1985, 1751.

Scheme 1.

- 2) Recent syntheses of chiral endo-brevicomin a) K.Mori and Y.B.Seu, Tetrahedron, 41, 3429(1985); b) F.Sato, O.Takahashi, T.Kato, and Y.Kobayashi, J.Chem.Soc., Chem.Commun., 1985, 1638; c) S.Hatakeyama, K.Sakurai, and S.Takano, ibid., 1985, 1759; d) A.Yasufoglu, S.Antons, and H.Scharf, J.Org.Chem., 51, 3485(1986); e) H.Redlich, W.Bruns, W.Francke, V.Schurig, T.L.Payne, and J.P.Vite, Tetrahedron, 43, 2029(1987); f) S.Ramaswamy and A.C.Oehlschlager, J.Org.Chem., 54, 255(1989) and references therein.
- 3) T.E.Bellans, R.G.Brownlee, and R.M.Silverstein, Tetrahedron, 25, 5149(1969).
- 4) E. Vedejs and P.L. Fuchs, J. Org. Chem., 36,366(1971).
- 5) T.Nakata, T.Tanaka, and T.Oishi, Tetrahedron Lett., 24, 2653(1983).
- 6) Oehlschlager et al. reported the synthesis of (-)-endo-brevicomin from similar ketone using $Zn(BH_{II})_2$ reduction. See Ref. 2f.

(Received July 8, 1989)